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Abstract

Saari’s Conjecture, generalized from its usual context of the N -body problem to a simple mechanical system with symmetry,
says roughly that a condition of constant locked inertia tensor (interpreted appropriately) along a solution curve should guarantee
that the curve is a relative equilibrium. Using a local Lagrangian slice parametrization about a non-symmetric point in phase space,
we offer the motion in the form of a reduced Euler–Poincaré–Lagrange system together with the reconstruction equation. We state
necessary and sufficient conditions for the existence of relative equilibria in this parametrization. These conditions allow us to relate
curves with constant locked inertia tensors to relative equilibria. We find a class of simple mechanical systems with symmetry for
which Saari’s Conjecture is true. We also show that if a simple mechanical system with n degrees of freedom is symmetric under
the free linear action of a k-dimensional Lie group where k(k +1)/2 ≥ (n −k), then a version of Saari’s Conjecture holds except at
specific isolated points. We apply our results to the three-dimensional three-body and four-body problems and to the n-dimensional
general relative two-body problem.
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1. Introduction

A relative equilibrium for a mechanical system with symmetry is a solution of the equations of motion that is
also the orbit of a one-parameter symmetry group. For the planar N -body problem of celestial mechanics a relative
equilibrium is a solution in which the whole system rotates with a constant angular velocity about a fixed axis through
the center of mass. Such a configuration has a moment of inertia that is constant in time. Saari [17] conjectured that a
solution of the N -body problem has a constant moment of inertia if and only if it is a relative equilibrium. Renewed
interest in Saari’s Conjecture is reflected in a number of recent papers on the N -body problem.
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The concept of the inertia tensor in the N -body problem generalizes to that of the locked inertia tensor in simple
mechanical systems with symmetry. Because the locked inertia tensor is an important ingredient in stability theory for
a simple mechanical system with symmetry (see, for example, [22]), Saari’s Conjecture in this more general context is
a natural question. The first step in this direction was an analysis of a generalization of Saari’s Conjecture to mechanics
on Lie groups [5]. Here we shall investigate the conjecture for even more general simple mechanical systems with
symmetry.

The N -body problem consists of particles with masses m A, 1 ≤ A ≤ N , at positions qA(t) ∈ Rn relative to a fixed
inertial frame, interacting by pairwise mutual Newtonian (−1/R) potentials. Saari’s Conjecture states that a solution
of the N -body problem has constant moment of inertia if and only if the system is in relative equilibrium. For the
system to be in relative equilibrium, necessity of the condition of constant moment of inertia is obvious. The profound
piece of Saari’s Conjecture is sufficiency.

Recent interest in Saari’s Conjecture is partly the indirect result of the discovery of the “figure eight” periodic
solution to the three-body problem, numerically by Moore [12] and analytically by Chenciner and Montgomery [2].
One of the observations made was that the figure eight displays an almost constant moment of inertia. In [21]
Simó proved numerically that the moment of inertia along this solution is indeed not constant and therefore Saari’s
Conjecture remained open.

Subsequently, Saari’s Conjecture has been proven for the planar three-body problem. (See [6,10,11].) Diacu et al.
[4] proved Saari’s Conjecture for the case of N collinear bodies, but the general conjecture is still unsolved for N ≥ 4.
By altering the potential function Santoprete [18] has produced a counterexample to a generalized Saari’s Conjecture.
There are other counterexamples in the literature, for instance that of Roberts [15] concerning a set-up with negative
masses. Schmah and Stoica [20] have taken a different approach, showing that, given an arbitrary function (without
too many critical points) and within the class of smooth vector fields with a given free symmetry, generic vector fields
have no non-relative-equilibrium solutions conserving the function. In the light of their results, it is to be expected that
the relative equilibria are the only solutions with constant moment of inertia.

At a meeting in 2002, J. Marsden hypothesized that Saari’s Conjecture should admit an extension to more general
mechanical systems with symmetry. Chenciner [1] later asked: “Is there a conceptual proof for Saari’s Conjecture?
Why not fix the moment of inertia tensor and ask the same question (maybe in higher dimensions)?” Thus we are
motivated toward such possible extensions of the conjecture.

For a manifold Q and a Lie group G acting freely and properly on the left on Q, a Lagrangian simple mechanical
system with symmetry consists of a real-valued Lagrangian on the tangent bundle T Q that is in the form of kinetic
energy minus potential energy and invariant under the tangent lifted action. For a simple mechanical system with
symmetry, it would appear that the moment of inertia is the locked inertia tensor, leading to the following naive
generalization of Saari’s Conjecture.

A Lagrangian simple mechanical system with symmetry is at a point of relative equilibrium if and only if the
locked inertia tensor is constant along the integral curve that passes through that point.

In the planar N -body problem, this naive conjecture reduces to Saari’s original conjecture with potentials not
necessarily Newtonian. However, the naive conjecture is false due to the aforementioned counterexample described
in [18]. Moreover, Hernández-Garduño et al. [5] found a counterexample in the setting of mechanics on Lie groups
where the locked inertia tensor is not constant along a relative equilibrium. In other words, the direction that was
immediately true for the planar N -body problem fails, and one has to take more care when interpreting the moment
of inertia. We defer to Section 2 the discussion about an appropriate formulation of Saari’s Conjecture in the context
of simple mechanical systems.

Rather than try to prove or disprove the conjecture, we focus upon finding geometric relations between the locked
inertia tensor and relative equilibria. More precisely, assuming a constant locked inertia tensor, we deduce necessary
and sufficient conditions for relative equilibria. We conclude that the solution set with constant locked inertia tensor
may include other solutions besides relative equilibria. We also show that under some restrictions related to the
dimensions of the group, a generalized Saari’s Conjecture holds for linear actions. This result is applied to the spatial
three- and four-body problems.

The key to our investigation is expressing the dynamics in slice coordinates. Locally near a non-symmetric point
q0 ∈ Q, we may write T Q ' G × (g× T S), where g is the Lie algebra of G, and S is a submanifold of Q orthogonal
at q0 to the group orbit. Then the dynamics splits into motion along the group (the reconstruction equation) coupled
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to motion in the reduced space g × T S (the slice equations). Since we deduce the dynamics in the reduced space via
a variational principle, we call the reduced system the Euler–Poincaré–Lagrange (EPL) equations. In the (locally)
reduced space, the equations form a coupled system of a generalized rigid body on g and a vibrational non-symmetric
Lagrangian on T S. For a simple mechanical system, a relative equilibrium corresponds to a fixed velocity on g and a
critical point of the augmented potential. Throughout the paper we assume symmetries given by compact matrix Lie
groups. The configuration space Q is assumed to be finite dimensional.

The flow of this paper is as follows. In Section 2 we briefly review the theory of simple mechanical systems with
symmetry and state the Refined Saari Problem in this context. This generalization agrees with the formulation for
the particular case of mechanics on Lie groups described in [5]. The next section describes a slice parametrization
around a non-symmetric point and introduces Lagrangian slice coordinates in the neighborhood of a non-symmetric
point. Next appears a section on the Lagrangian in slice coordinates, the local reduction in a slice parametrization,
and the EPL equations. The next section presents necessary and sufficient conditions for relative equilibria in slice
parametrization. In Section 4 we discuss the relation between relative equilibria and constant inertia solutions. We
revisit the Refined Saari Problem in a slice parametrization and close with some applications.

2. Simple mechanical systems and Saari’s Conjecture

2.1. Simple mechanical systems with symmetry

This section recalls the definitions of the locked inertia tensor and a relative equilibrium in the context of a generic
simple mechanical system with symmetry. This exposition borrows both Marsden’s notation and his results [7]. We
begin with some general facts about Lagrangian simple mechanical systems.

A Lagrangian simple mechanical system on a configuration manifold Q consists of a Lagrangian L : T Q → R of
the form kinetic energy minus potential energy, where the potential energy is a differentiable function on Q denoted
by V (q). Such a system is said to have symmetry if the Lagrangian L : T Q → R is invariant under the natural lift to
T Q of a proper left action of a Lie group G on Q. The Lagrangian determines a metric 〈〈, 〉〉 whose quadratic form is
the kinetic energy, and thus G acts by isometries (that is, the metric is invariant under the action of G). The momentum
mapping corresponding to the action of G on T Q is the map J : T Q → g∗ given by the formula

J(vq)(ξ) = 〈〈vq , ξQ(q)〉〉, (2.1)

where ξQ is the infinitesimal generator of the action on Q corresponding to ξ ∈ g. Of course, Noether’s theorem
guarantees that J is conserved along solutions of the Euler–Lagrange equations. (See, for example, [7].)

The locked inertia tensor is defined to be the mapping I : Q → Lin(g, g∗) given by

〈I(q)η, ζ 〉 := 〈〈ηQ(q), ζQ(q)〉〉 = J(ηQ(q))(ζ ),

where 〈, 〉 is the natural pairing of g and g∗. The name comes about from the fact that if one has, for example, two
freely spinning rigid bodies connected by a ball-in-socket joint, then the locked inertia tensor at a configuration q ∈ Q
is the inertia tensor for the rigid body obtained by locking, or welding, the joint in this configuration. If g · q denotes
the left action of g ∈ G on q then the locked inertia tensor is equivariant in the sense that

〈I(g · q)η, ζ 〉 =
〈
I(q)Adg−1η, Adg−1ζ

〉
.

Notice in particular that if G is abelian then I is invariant under the group action.
The angular velocity of the locked system is defined via the map

α : T Q → g : vq 7→ I−1(q)J(vq).

The map α is a connection on the bundle Q → Q/G known as the mechanical connection. It is useful to recall the
horizontal–vertical decomposition of a vector v ∈ Tq Q given by the prescription

v = horqv + vertqv,

where vertqv = [α(vq)]Q(q) and horqv = v − vertqv. One may think of vertqv as the orthogonal projection of
v ∈ Tq Q.
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Let (qe, q̇e) ∈ T Q and µ := J(qe, q̇e). By definition, (qe, q̇e) is a relative equilibrium if there is a ξ ∈ g such that
the solution curve in T Q passing through (qe, q̇e) is given by the one-parameter family

t 7→ exp(tξ) · (qe, q̇e).

Observation 2.1. If ze := (qe, q̇e) ∈ T Q is a relative equilibrium, then so is the left translation g · ze for any
g ∈ G. More precisely, if z(t) = exp(tξ) · ze is a relative equilibrium dynamical orbit, then so is g · z(t) =

exp[(Adgξ)t] · (g · ze).

For a proof, see [7].
A useful quantity for identifying relative equilibria is the augmented potential, defined by

Vξ (q) := V (q) −
1
2
〈I(q)ξ, ξ〉.

A point (qe, ξQ(qe)) ∈ T Q is a relative equilibrium if and only if qe is a critical point of Vξ and q̇e = ξQ(qe).
(See [7] for a proof.) Observe that if (qe, ξQ(qe)) is a relative equilibrium, then the unique solution curve through
that point is given by exp(tξ) · (qe, q̇e). Thus every point on that curve is also a relative equilibrium. Note that at a
relative equilibrium, the horizontal part of the velocity vector is null. That is, for all t along the relative equilibrium
(q(t), q̇(t)) := exp(tξ) · (qe, q̇e), we have

q̇(t) = vertq(t)q̇(t) = ξQ(q(t)).

2.2. The Refined Saari Problem

Hernández-Garduño et al. [5] point out that a relative equilibrium curve q(t) does not necessarily conserve the
locked inertia tensor I(q(t)). Instead, they prove that for any simple mechanical system, a relative equilibrium curve
q(t) = exp tξ · qe conserves the locked inertia tensor along ξ , that is, I(q(t))ξ is constant as a curve in g∗. This
observation leads to a Refined Saari Problem in the context of simple mechanical systems:

Find classes of simple mechanical systems with symmetry such that a solution q(t) of the Euler–Lagrange
equations is a relative equilibrium if and only if I(q(t))ξ is constant as a curve in g∗, where ξQ(q(0)) = q̇(0).

One such class is that of mechanical systems on Lie groups with no potential function, precisely, the class of
mechanical systems with the configuration manifold being the group itself and with no potential function [5]. For
G = SO(3) this result becomes the well-known fact that a necessary and sufficient condition for relative equilibrium
of a rigid body in R3 is the alignment of the angular velocity and the angular momentum.

3. Slice coordinates around a non-symmetric point

For the Refined Saari Problem in the case of a simple mechanical system on a general configuration manifold Q
we invoke the technique of slices. In this section we shall cast a simple mechanical system in a slice parametrization,
state a reduction of Hamilton’s principle, and express conditions for relative equilibria in the slice coordinates.

3.1. Slice coordinates

The idea behind slices is to locally decompose motion into two coupled systems. One describes the dynamics in
the symmetry direction, or “rigid body” motion on T G. The other describes the dynamics in the direction orthogonal
to the symmetry, or “shape-vibrational” motion on T S where S is chosen to be a submanifold of Q orthogonal to the
group orbit. For instance, for a planar three-unit-mass particle system initially disposed in a triangular configuration,
the motion in the group direction describes the changes in the angular velocity and the rotation of the triangle, whereas
the dynamics on T S catches changes of the triangle’s shape. We briefly present here the formal background needed to
develop the above ideas. For more detailed coverage of these topics, see [3,13,16], or [19].

Let Q be a smooth manifold and G a Lie group acting smoothly and properly on Q on the left. The isotropy
subgroup of a point q ∈ Q is Gq := {g ∈ G|gq = q}. By definition, the action is free if all of the isotropy subgroups
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are trivial. A point q0 ∈ Q is called non-symmetric if it has trivial isotropy, that is, if Gq0 = e. Now consider a
non-symmetric point q0 ∈ Q and S a manifold together with the left action on of G on G × S given by

G × (G × S) −→ (G × S) : (h, (g, s)) 7−→ (hg, s). (3.1)

This action is free and proper. A tube for the G action at q0 is a G-equivariant diffeomorphism from the product G × S
to an open neighborhood of G · q0 in Q that, for some s0 ∈ S, it maps (e, s0) to q0. The space S may be embedded in
G × S as {(e, s) : s ∈ S}; the image of S by the tube is called a slice.

The slice theorem of Palais [14] states that tubes always exist for smooth proper actions of a Lie group G on a
manifold Q. If (Q, K(·, ·)) is a smooth Riemannian manifold and the action of G is linear, the theorem can be stated
as follows: Given the non-symmetric point q0 ∈ Q, let N be the orthogonal complement to g · q0, the tangent of the
group orbit. Then there exists a neighborhood S of 0 in N such that the map

τ : G × S → Q : (g, s) → g · (q0 + s) (3.2)

is a tube for the G action at q0. The complement N = (g · q0)
⊥ is called a linear slice to the G action at q0. The

product G × N may be identified with the normal bundle of the orbit G · q0. Since the G action is linear, S may be
chosen to be any neighborhood of 0 such that τ is injective. Note that T S is trivial, as S is a subset of a vector space.
Also, Ts S ∼= N for any s ∈ S. We write elements of T S as (s, ṡ). The tangent bundle T (G × S) ' T G × T S is
identified with G × g × T S via the left trivialization

G × g × T S −→ T G × T S : (g, ξ, s, ṡ) 7−→ (g, Te Lgξ, s, ṡ). (3.3)

For any (g, s) ∈ G × S, the map T(g,s)τ can be identified with an isomorphism from g × Ts S to Tτ(g,s)Q. A velocity
vector vq ∈ T Q is represented by the tangent map

T τ : G × g × T S −→ T Q : (g, ξ, s, ṡ) −→ g
(
ξQ(q0 + s) + ṡ

)
. (3.4)

3.2. The Lagrangian in slice coordinates

In the special case of a simple mechanical system, the Lagrangian L : T Q → R has the form

L(q, vq) =
1
2

K(vq , vq) − V (q)

for some G-invariant Riemannian metric K on Q, called the kinetic energy, and some G-invariant potential V : Q →

R. We shall compute L for such systems, using the results of the previous section.
Let N := (g · q0)

⊥ be the orthogonal complement to the tangent to the group orbit through q0, with respect to the
given metric. Using parametrization (3.4), recall that for any (g, s) ∈ G × S, the map T(g,s)τ can be identified with an
isomorphism from g× N to Tτ(g,s)Q. We write the metric tensor in these coordinates. Since the metric is G-invariant,
K (τ (g, s)) depends only on s. For any s, we see that K(s) is a symmetric bilinear form on g× N , which we represent
as a matrix. This matrix can be written in block form, with respect to the splitting Tτ(g,s)Q ∼= g × N , as follows:

K(s) =

(
IB(s) C(s)
CT(s) m(s)

)
.

The block IB is called the body locked inertia tensor. It is related to the usual locked inertia tensor I by

〈I (g · (q0 + s)) ξ, η〉 = 〈IB(s)Adg−1ξ, Adg−1η〉 (3.5)

for any ξ, η ∈ g. The block m(s) is called the reduced mass. The terminology comes from the fact that the kinetic
energy matrix is often called the mass matrix. Note that IB(s) and m(s) are invertible. The block C(s) is called the
Coriolis tensor. It couples the system and is related to the usual Coriolis forces. Our choice of coordinates q0 = τ(e, 0)

enforces C(0) = 0, since T(e,0)τ maps g × {0} to g · q0 and {0} × N to Tq0(q0 + N ) = N = (g · q0)
⊥. Therefore the

mechanical system in slice coordinates is decoupled at q0.
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Since it is G-invariant, the potential V is written in slice coordinates as V (s). So, L takes the form

Lslice(g, ξ, s, ṡ) = L ◦ (T τ) (g, ξ, s, ṡ) =
1
2

(
ξ ṡ

)
K(s)

(
ξ

ṡ

)
− V (s). (3.6)

Using (2.1) and the identity ξQ(g · q) =
(
Adg−1ξ

)
Q (q), we may express the momentum map in slice coordinates:

J : G × g × T S −→ g∗
: (g, ξ, s, ṡ) 7−→ Ad∗

g (IB(s)ξ + C(s)ṡ) .

3.3. The Euler–Poincaré–Lagrange system

We begin by observing that the tangent lift of (3.1) acts only on the “rigid body” component T G ' G × g of
the phase space T G × T S ' G × g × T S. Since the Lagrangian is left invariant under the action of G, we are
able to reduce the dynamics using Hamilton’s variational principle adapted to our particular phase space structure.
The reduced equations of motion form a coupled system formed by a reduced Euler–Poincaré rigid body part and
a (tangent bundle) Lagrangian shape-vibrational part. (See [8] or [9] for a summary of Euler–Poincaré reduction of
Lagrangian mechanics.)

Theorem 3.1. Let G be a Lie group and S be a vector space. Consider a free and proper left action of G on G × S.
Also, let L : T G × T S → R be a left-invariant Lagrangian and its restriction to e ∈ G be l : g × T S → R. For a
curve (g(t), s(t)) ∈ G × S let (ξ(t), s(t)) =

(
g(t)−1ġ(t), s(t)

)
, i.e., ξ(t) = Tg(t)Lg(t)−1 ġ(t). Then the following are

equivalent:

(i) Hamilton’s principle

δ

∫ b

a
L (g(t), ġ(t), s(t), ṡ(t)) = 0

holds for variations (δg(t), δs(t)) vanishing at the end points.
(ii) The curve (g(t), s(t)) satisfies the Euler–Lagrange equations of L.

(iii) The variational principle

δ

∫ b

a
l (ξ(t), s(t)) = 0

holds on g × T S using variations of the form

(δξ, δs) = (η̇ + [ξ, η], δs) ∈ T g × T T S

where η vanishes at the end points.
(iv) The Euler–Poincaré–Lagrange (EPL) coupled equations hold:

d
dt

δl
δξ

= ad∗
ξ

δl
δξ

d
dt

δl
δṡ

=
δl
δs

.

Proof. This is directly analogous to the proof for the Euler–Poincaré equations (see, for instance, [9]). �

Observation 3.2. If T S is trivial then the EPL equations reduce to the well-known Euler–Poincaré equations on g.

For a simple mechanical system with Lagrangian (3.6), the EPL coupled system takes the form:

d
dt

(IB(s)ξ + C(s)ṡ) = ad∗
ξ (IB(s)ξ + C(s)ṡ) (3.7)

d
dt

(
CT(s)ξ + m(s)ṡ

)
=

∂

∂s

(
1
2
〈IB(s)ξ, ξ〉 + 〈C(s)ṡ, ξ〉 +

1
2
〈m(s)ṡ, ṡ〉 − V (s)

)
. (3.8)
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The dynamical picture of the system is completed by the reconstruction equation

ġ(t) = g(t)ξ(t), g(0) = e. (3.9)

Given a solution (ξ(t), s(t), ṡ(t)) of the reduced EPL system, the orbit in the full unreduced space is retrieved by
integrating the reconstruction equation. This is a standard procedure for systems with symmetry.

3.4. Relative equilibria in slice coordinates

Relative equilibria are special solutions that are characterized by constant motion along the orbits of the symmetry
group. In a slice parametrization, locally factoring out the action of G on the phase space, the quotient space is g×T S.
It follows that relative equilibria correspond to equilibria in the reduced space together with constant velocity in the
group (i.e., in (3.9) ξ(t) is constant).

To simplify the notation, from now on we write the (local) diffeomorphism (3.2) q = g(q0 + s) as q ' (g, s) and
its tangent lift (3.4) as (q, v) ' (g, ξ, s, ṡ). Also, we define Ṽ := V ◦ τ and Ĩ := I ◦ τ .

Recall that in the case of a simple mechanical system, a point (qe, ve) ∈ T Q is a relative equilibrium if and only if
there is a ξ ∈ g such that

(i) ve = ξQ(qe), and
(ii) qe is a critical point of the augmented potential Vξ (q) := V (q) −

1
2 〈I(q)ξ, ξ〉.

In slice coordinates these conditions G × g × T S become:

Proposition 3.3. A point (ge, ξe, se, ṡe) ∈ G × g × T S is a relative equilibrium if and only if

(i) ṡe = 0, and
(ii) (ge, se) is a critical point of the augmented potential in slice coordinates,

Ṽξ (g, s) := Ṽ (s) −
1
2
〈Ĩ(g, s)ξ, ξ〉

where ξ = Adgeξe.

Proof. By identification of the infinitesimal generators ξQ(q) and ξG×S(g, s) we have

ξG×S(g, s) = (ξG(g), 0),

where ξG(g) is the infinitesimal generator corresponding to the left action of G on itself. It follows that ξG(ge) =

(ge, ξe) and ṡe = 0. Via the left trivialization (3.3), we have ξG(ge) = (ge, Adg−1
e

ξ) and therefore ξ = Adgeξe.
Condition (ii) is obtained by a direct substitution of q with τ(g, s) in the augmented potential formula. �

Observation 3.4.
∂

∂g

∣∣∣∣
g=ge

1
2
〈Ĩ(g, s)ξ, ξ〉 = 0 if and only if ad∗

ξ (Ĩ(ge, s)ξ) = 0.

Proof. Any vector δg ∈ Tge G may be expressed as δg = ηG(ge) for some η ∈ g. If ∂
∂g

∣∣∣
g=ge

1
2 〈Ĩ(g, s)ξ, ξ〉 = 0 we

have

0 =
∂

∂g

∣∣∣∣
g=ge

1
2
〈Ĩ(g, s)ξ, ξ〉δg =

∂

∂g

∣∣∣∣
g=ge

1
2
〈Ĩ(g, s)ξ, ξ〉ηG(ge)

=
d
dt

∣∣∣∣
t=0

1
2
〈Ĩ(exp(tη)ge, s)ξ, ξ〉

=
d
dt

∣∣∣∣
t=0

1
2
〈Ĩ(ge, s)Adexp(−tη)ξ, Adexp(−tη)ξ〉

= 〈Ĩ(ge, s)ξ, adξη〉 = 〈ad∗
ξ (Ĩ(ge, s)ξ), η〉.

Thus, ad∗
ξ (Ĩ(ge, s)ξ) = 0. The argument is completely reversible. �
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Lemma 3.5. (ge, ξe, se, ṡe) ∈ G × g × T S is a relative equilibrium if and only if all of the following are satisfied:

(i) ṡe = 0,
(ii) se is a critical point of the augmented potential given by

Ṽ ge
ξ (s) := Ṽ (s) −

1
2
〈Ĩ(ge, s)ξ, ξ〉

and
(iii) ad∗

ξ (Ĩ(ge, se)ξ) = 0, where ξ = Adgeξe.

Proof. Using Proposition 3.3 and Observation 3.4, the verification is immediate. �

By Observation 2.1 the left translation of a relative equilibrium is a relative equilibrium. Therefore, without losing
generality, we may choose ge to be the symmetry group identity. Consequently, ξ = ξe and we have the following
criterion.

Criterion 3.6. In a slice parametrization, a relative equilibrium is a dynamical orbit of the form (g(t), ξe, se, ṡe),
where (ξe, se, ṡe) satisfies

(i)

ṡe = 0,

(ii) se is a critical point of the augmented potential given by

Ṽξe (s) := Ṽ (s) −
1
2
〈IB(s)ξe, ξe〉, and (3.10)

(iii)

ad∗
ξe

(IB(se)ξe) = 0,

and g(t) is the solution of the reconstruction equation ġ(t) = g(t)ξe, g(0) = e.

4. Constant locked inertia tensor and Saari’s Conjecture

4.1. Constant locked inertia tensor and relative equilibria

The aim of this subsection is to establish conditions on the locked inertia tensor that suffice to make a solution a
relative equilibrium. We also discuss the Refined Saari Problem in slice coordinates.

Proposition 4.1. A dynamical orbit (g(t), ξ(t), s(t), ṡ(t)) with an initial condition (e, s0, ξ0, ṡ0) is a relative
equilibrium if and only if all of the following are satisfied.

(i) ṡ0 = 0,
(ii) s0 is a critical point of Ṽξ0(s) given in (3.10), and

(iii) d
dt

∣∣∣
t=0

Ĩ(g(t), s(t))ξ0 = 0, that is,

d
dt

∣∣∣∣
t=0

〈Ĩ(g(t), s(t))ξ0, η〉 = 0 for all η ∈ g.

Proof. Items (i) and (ii) appear verbatim from Criterion 3.6. If the curve (g(t), ξ(t), s(t), ṡ(t)) is a relative
equilibrium, then (iii) is the restatement in slice coordinates of Proposition 5.1 in [5]. Conversely, it suffices to verify
condition (iii) of Criterion 3.6. Since Ĩ(g(t), s(t))ξ0 is constant in time, we apply (3.5), yielding

d
dt

∣∣∣∣
t=0

〈Ad∗

g−1(t)IB(s(t))Adg−1(t)ξ0, η〉 = 0 for all η ∈ g,

or
d
dt

∣∣∣∣
t=0

〈IB(s(t))Adg−1(t)ξ0, Adg−1(t)η〉 = 0 for all η ∈ g.
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Continuing, we get〈
d
dt

∣∣∣∣
t=0

IB(s(t))Adg−1(0)ξ0, Adg−1(0)η

〉
+

〈
IB(s(0))Adg−1(0)ad(−ξ0)ξ0, Adg−1(0)η

〉
+

〈
IB(s(0))Adg−1(0)ξ0, Adg−1(0)adξ0η

〉
= 0 (4.1)

where we used the fact that
d
dt

∣∣∣∣
t=0

Adg−1(t)ζ =
d
dt

∣∣∣∣
t=0

Adg−1(0) exp(−tξ0)
ζ for all ζ ∈ g.

Using (i), relation (4.1) becomes〈
IB(s0)ξ0, adξ0η

〉
= 0 for all η ∈ g.

Finally, g(t) may be recovered via the reconstruction equations (3.9). �

Observation 4.2. Condition (iii) of Proposition 4.1 can be replaced with the more restrictive condition that
Ĩ(g(t), s(t))ξ0 is constant along the dynamical orbit. Necessity of the replacement condition is a direct consequence
of Noether’s theorem, as shown in Proposition 5.1 in [5].

Observation 4.3. Condition (i) implies that d
dt

∣∣∣
t=0

〈IB(s(t))ξ, η〉 = 0 for all ξ, η ∈ g, or, more restrictively, IB(s(t))
is constant along the orbit.

Observation 4.4. One may easily verify that Proposition 5.2 in [5] is generalized by Criterion 3.6. Indeed,
Proposition 5.2 in [5] refers to the specific case of Q being the symmetry group G itself. This corresponds to a
trivial slice, i.e., Q = G × {0}, and thus conditions (i) and (ii) of Criterion 3.6 are satisfied vacuously. The condition
from Proposition 5.2 in [5] that for any η ∈ g the quantity 〈I(g(t), 0)ξ, η〉 be constant then satisfies condition (iii) of
Criterion 3.6.

Observation 4.5. In the planar N-body problem, Q = R3N
\{collisions} and G = SO(2). In this case the action is

free, since the only non-symmetric point q = 0 corresponds to a total collision. Choose q0 ∈ Q as a base point for a
slice parametrization. Near q0 ' (e, 0) we have T Q ' SO(2) × so(2) × T S where S is an open subset of R2N−2.
Since SO(2) is abelian, Ĩ(g, s) = IB(s). Now consider a dynamical orbit (q(t), v(t)) ' (g(t), ξ(t), s(t), ṡ(t)) with
initial condition (q0, v0) ' (e, ξ0, s0, ṡ0) such that the inertia tensor I(q(t)) is constant. Because I(q(t)) = IB(s(t)),
by applying Proposition 4.1 this orbit is a relative equilibrium if and only if ṡ0 = 0 and s0 is a critical point of the
augmented potential Vξ0(s).

We return now to the Refined Saari Problem restated in slice coordinates:

Consider a simple mechanical system with symmetry. Let q(t) ' (g(t), s(t)) be a solution of the EPL equations
together with initial conditions (q(0), q̇(0)) ' (e, ξ0, 0, ṡ0), and the reconstruction equation. Find classes of
simple mechanical systems with symmetry such that q(t) ' (g(t), s(t)) is a relative equilibrium if and only
if Ĩ(g(t), s(t))ξ0 is constant as a curve in g∗.

Using Proposition 4.1 and Observations 4.2 and 4.3, we proceed to identify one such class of solutions of the Refined
Saari Problem.

Theorem 4.6. A class of solutions of the Refined Saari Problem consists of systems with the following properties:

(i) the configuration space is a finite dimensional Riemannian manifold Q with symmetry from a free and proper
action of a k-dimensional Lie group G;

(ii) the matrix
[

∂IB
∂s

]
has maximal rank for all s ∈ S and k(k+1)

2 ≥ n − k, where n is the dimension of Q (note that
n − k is the dimension of the slice S), and

(iii) IB(s(t)) is constant, that is, for each ξ ∈ g and η ∈ g,

〈IB(s(t))ξ, η〉 = C(ξ,η),

where C(ξ,η) is a constant depending on ξ and η.
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Proof. Since IB(s(t)) is constant, we have
[

∂IB
∂s

]
ṡ = 0. Because the matrix

[
∂IB
∂s

]
has maximal rank for all s ∈ S

and it is symmetric, its rank equals max{k(k + 1)/2, n − k}. Given that k(k + 1)/2 ≥ n − k, it follows that the linear
system

[
∂IB
∂s

]
ṡ = 0 admits only the trivial solution ṡ = 0, and this happens for all t ≥ 0. Thus ṡ(t) = 0, and so

s(t) = s(0) = 0 for all t ≥ 0.
Our statement assumes that (g(t), ξ(t), s(t), ṡ(t)) is a dynamical orbit. In particular, this means that

(ξ(t), s(t), ṡ(t)) solves the EPL system. Substituting s(t) = 0 = ṡ(t) into Eq. (3.7), we obtain that

d
dt

(IB(0)ξ(t)) = ad∗

ξ(t)(IB(0)ξ(t)), (4.2)

with initial condition ξ(0) = ξ0.
Note that condition (ii) in the hypothesis implies that for each η ∈ g, d

dt

∣∣∣
t=0

〈IB(s(t))ξ0, η〉 = 0. Following the same

reasoning as in Proposition 4.1, if Ĩ(g(t), s(t)) is constant then ad∗
ξ0

(IB(s0)ξ0) = 0. From uniqueness of solutions,
the solution of Eq. (4.2) is ξ(t) = ξ0.

Recall that at the base of the slice we have the coupling term C(0) = 0. Since s(t) = 0, it follows that C(s(t)) = 0.
Rewriting (3.8) using all information gathered, we obtain that

0 =
∂

∂s

(
1
2
〈IB(0)ξ0, ξ0〉 − V (s)

)
,

i.e., s = 0 is a critical point of Vξ0(s). Thus, all three conditions of Criterion 3.6 are satisfied, so the solution is a
relative equilibrium.

Conversely, if the solution is a relative equilibrium then by Observation 4.2 it follows that Ĩ(g(t), s(t))ξ0 is constant.
�

It is natural to ask how restrictive the maximal rank condition is. Since IB(s) = I(q) for q ' (e, s), we may ask
a more general question: What are the critical points of I(q)? For linear actions on inner product spaces we have a
response.

Proposition 4.7. Consider a linear action by isometries of a Lie group G on an inner product space W . Write
ξ · q := ξW (q) and denote by ξ · v the infinitesimal action of ξ ∈ g on v ∈ Tq W ∼= W . Let q0 be a critical
point for the locked inertia tensor. Then ξ · (ξ · q0) = 0.

Proof. Let q0 be a critical point for the locked inertia tensor. Then

0 = Dq0〈I(q)ξ, η〉 = Dq0〈〈ξ · q, η · q〉〉W ∀ξ, η ∈ g.

For a smooth curve q(t) in W such that q(0) = q0 and q̇(0) = δq,

d
dt

∣∣∣∣
t=0

〈〈ξ · q(t), η · q(t)〉〉W = Dq0〈〈ξ · q, η · q〉〉W · δq = 0,

so

0 =
d
dt

∣∣∣∣
t=0

〈〈ξ · q(t), η · q(t)〉〉W

= 〈〈ξ · δq, η · q0〉〉W + 〈〈ξ · q0, η · δq〉〉W

= 〈〈δq, −ξ · (η · q0)〉〉W + 〈〈−η · (ξ · q0), δq〉〉W

= −〈〈δq, ξ · (η · q0) + η · (ξ · q0)〉〉W ,

using the definition of the infinitesimal action of g on Q and the G-invariance of the metric. Since the last relation is
valid for all δq ∈ Tq0 W we get ξ ·(η ·q0)+η ·(ξ ·q0) = 0 ∀ξ, η ∈ g. Let ξ = η and the result follows immediately. �

Corollary 4.8. Consider the SO(3) diagonal action on W = R3n . Let mi , i = 1, 2, . . . , n, be some strictly positive
numbers and endow W with the constant metric 〈〈v, w〉〉W := (1/2)vT Mw, where M is the constant mass matrix
M = (Mk,l)k,l=1,2,...,3n , Mk,l = 0 for k 6= l and Mk,k = mi for k = 3i − 2, 3i − 1, 3i with i = 1, 2, . . . , n. Then
q = 0 is the only critical point of the locked inertia tensor.



J.K. Lawson, C. Stoica / Journal of Geometry and Physics 57 (2007) 1247–1258 1257

Proof. Let q = (q1, q2, . . . , qn) ∈ W , where each qi ∈ R3, i = 1, 2, . . . , n. The diagonal action of SO(3) on W is
given by

(g, q) 7−→ g · q := (g · q1, g · q2, . . . , g · qn),

that is, each component qi of the vector q is rotated by g ∈ SO(3). Consider q a critical point of I. By Proposition 4.7,
ξ · (ξ · q) = 0 for all ξ ∈ so(3). Since the action is diagonal, we have that ξ · (ξ · qi ) = 0 for each i = 1, 2, . . . , n and
for all ξ ∈ so(3).

Identifying so(3) with R3 via the “hat” map (see, for instance, [8]), the last relation implies ξ̂ × (ξ̂ × qi ) = 0, for
all ξ̂ ∈ R3. So for each i = 1, 2, . . . , n, ξ̂ is parallel to (ξ̂ × qi ) = 0 for all ξ̂ ∈ R3. But this is possible if and only if
qi = 0, i = 1, 2, . . . , n, i.e., if and only if q = 0. �

4.2. Applications

Abelian symmetries
The Refined Saari Problem includes the subclass of simple mechanical systems with the following qualities:

(1) the configuration manifold Q is an n-dimensional punctured inner product space W\{0};
(2) the symmetry is given by a free linear action by isometries of an abelian Lie group G of dimension k;
(3) k(k+1)

2 ≥ n − k.

A generalized Saari’s Conjecture is true for the spatial three-body and four-body problems
Let G be the group of rotations in the space SO(3) and consider the three-body problem. Using the Jacobi

coordinates, the configuration space is R3
× R3

\{(0, 0)}. (Recall that Jacobi coordinates are given by the relative
vector between two of the masses and the position vector of the third mass relative to the center of mass of the first
two.) The following generalization of Saari’s Conjecture is true for N = 3:

A solution (q(t), q̇(t)) for the spatial N -body problem with I(q(t))ξ0 constant, where (ξ0)Qq(0) = q̇(0),
and IB(s(t)) = constant, is a relative equilibrium.

Indeed, by Corollary 4.8, the locked inertia tensor I has no critical points. If the masses are in a non-collinear
configuration, then, by Theorem 4.6 (here dim G = dim SO(3) = 3, and dim Q = 6), the above statement is
true. If the masses are in a collinear configuration, then one may apply the results of Diacu et al. [4]. In conclusion,
the generalized Saari’s Conjecture is true for the three-body problem in space, where the bodies may interact via any
potential defined on the configuration space R3

× R3
\{(0, 0)}.

A similar result applies to the spatial four-body problem. This is again a direct application of Theorem 4.6 with
dim G = 3 and dim Q = 9 (where we have used the generalized Jacobi coordinates).

Constant locked inertia tensor trajectories for SO(n) action on Rn

Consider a simple mechanical system with configuration space Rn
\{0}, n ≥ 2, endowed with the usual inner

product. Assume that the system has a symmetry given by the diagonal action of SO(n) on Rn . One may think about
this problem as a generalized two-body problem in Rn . Then a solution (q(t), q̇(t)) with constant I(q(t))ξ0, where
(ξ0)Qq(0) = q̇(0) and IB(s(t)) is constant, is a relative equilibrium.

Comments
If k(k+1)

2 < n − k then the constraints on the locked inertia tensor in Theorem 4.6 do not enforce ṡ(t) = 0. In this
case, one may produce physically relevant counterexamples by taking advantage of the freedom of moving in the slice
and choosing non-generic potentials. For instance, in [18], in a setting with G = SO(2) and S = R2, the potential
is chosen to be V (s) := IB(s)ξ0. One can verify that the associated EPL system “decouples” i.e. C(t) = 0 for all t .
Further, with the given choice for V , the system in s = (s1, s2) ∈ S becomes two decoupled harmonic oscillators. It
can be shown that the set of solutions preserving the moment of inertia form a large invariant manifold.
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5. Conclusions

In the context of simple mechanical systems with symmetry, we have extended the augmented potential method
of categorizing relative equilibria to a Palais slice at a non-symmetric base point. The new necessary and sufficient
criteria for relative equilibrium are applied to the Refined Saari Problem to identify new classes of solutions.

For future investigation we may wish to consider relative equilibria at symmetric base points. Of course, if one
point on a dynamical orbit is a relative equilibrium then every point is as well. So if such a curve passes through even
one non-symmetric point then applying the criteria for relative equilibrium at the non-symmetric point will suffice to
determine relative equilibrium for the entire curve. However, our method does not address solution curves for which
every point on the curve is symmetric.
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